Calculus III, MiniTest 4 Review

Dr. Graham-Squire, Fall 2013

- 1. Find the curl of the vector field $\mathbf{F}(x, y) = \frac{yz\mathbf{i} xz\mathbf{j} xy\mathbf{k}}{y^2z^2}$. Is \mathbf{F} conservative? If so, find f such that $\nabla f = \mathbf{F}$. Ans: curl $\mathbf{F}=0$, so \mathbf{F} is conservative. $f(x, y, z) = \frac{x}{yz}$ is a function such that $\nabla f = \mathbf{F}$.
- 2. Evaluate the line integrals:
 - (a) $\int_C (2x y)dx + (x + 2y)dy$ where C is given by:
 - (i) C: one revolution counterclockwise around the circle $x = 3 \cos t$, $y = 3 \sin t$.

Ans: Can use Green's theorem to get 18π .

(ii) C: the line segment from (0,0) to (3,-3).

Ans: Have to calculate the line integral directly to get 18.

(b) $\int_C xy \, dx + \frac{1}{2}x^2 \, dy$, where C is the boundary of the region between the graphs of $y = x^2$ and y = 1.

Ans: Can use either the fundamental theorem of line integrals or Green's thm. to get 0. f

(c)
$$\int y \, dx + x \, dy + \frac{1}{z} \, dz$$
 where C is the curve $\mathbf{r}(t) = \langle t, t^2 - 3t, \frac{3}{4}t + 1 \rangle, \ 0 \le t \le 4$

Ans: Use Fund. theorem to get $16 + \ln 4$.

(d)
$$\int_C (x^2 - y^2) dx + 2xy dy$$
, where C is given by $x^2 + y^2 = a^2$ (a is some constant).

Ans: Use Green's theorem to get 0.

(e) $\int_C xy \, ds$ where C is the line segment from (0,0) to (5,4).

Ans: Need to use formula for line integrals (the one that involves the arc length) to get $\frac{20\sqrt{41}}{3}$.

3. Find an equation for the tangent plane to the paraboloid given by

$$\mathbf{r}(u,v) = u\mathbf{i} + v\mathbf{j} + (u^2 + v^2)\mathbf{k}$$

at the point (1,2,5).

Ans: -2x - 4y + z = -5

4. Evaluate the surface integral $\iint\limits_S z\, dS$ over the surface given by

$$\mathbf{r}(u,v) = (u+v)\mathbf{i} + (u-v)\mathbf{j} + \sin v\mathbf{k}$$

where $0 \le u \le 2$ and $0 \le v \le \pi$. You may have to use Sage/Maple to evaluate the integral.

Ans:
$$\int_0^{\pi} \int_0^2 \sin v \sqrt{2\cos^2 v + 4} \, du \, dv = 8.623.$$